Skip to main content

Advertisement

Log in

Cerebral Monitoring in the Operating Room and the Intensive Care Unit: An introductory for the clinician and a guide for the novice wanting to open a window to the brain

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Grabitz K, Sandmann W, Stühmeier K, et al. The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg 1996; 23: 230–240.

    PubMed  Google Scholar 

  2. Grabitz K, Freye E, Stühmeier K, Sandmann W. Spinal evoked potentials in patients undergoing thoracoabdominal aortic reconstruction: A prognostic indicator of postoperative motor deficit. J Clin Monit 1993; 9: 186–190.

    Article  PubMed  Google Scholar 

  3. Grabitz K, Freye E, Prior R, et al. Does prostaglandin E1 and superoxide dismutase prevent ischaemic spinal cord injury after thoracic aortic cross clamping ? Eur J Vasc Surg 1990; 4: 19–24.

    Article  PubMed  Google Scholar 

  4. Brown RH, Nash CL. Current status of spinal cord monitoring. Spine 1979; 4: 466–470.

    Google Scholar 

  5. Burke D, Hicks R, Stephan J, et al. Trila-to-trial variability of corticospinal volleys in human subjects. Electroenceph Clin Neurophysiol 1995; 97: 231–237.

    Article  PubMed  Google Scholar 

  6. Jones SJ, Harrison R, Koh KF, et al. Motor evoked potential monitoring during spinal surgery: Responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroenceph Clin Neurophysiol 1996; 100: 375–383.

    PubMed  Google Scholar 

  7. Levy WJ, York D. Evoked potentials from the motor tracts in humans. Neurosurg 1983; 12: 422–429.

    Google Scholar 

  8. Tamaki T, Noguchi T, Takano H, et al. Clinical spinal cord monitoring as a clinical utilizatiion of the spinal evoked potential. Clin Orthop 1984; 184: 58–64.

    PubMed  Google Scholar 

  9. Tsuyama N, Tsuzuki N, Kurokawa T, Imai T. Clinical application of spinal cord action potential measurement. Int Orthop 1978; 2: 951–965.

    Article  Google Scholar 

  10. Lesser RP, Raudzens P, Lüders H, et al. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 1986; 19: 22–25.

    Article  PubMed  Google Scholar 

  11. Nuwer MR, Dawson EG, Carlson EG, et al. Somatosensory evoked spinal cord monitoring reduces neurogenic deficits after scoliosis surgery: Results of a large multicenter study. Electroenceph Clin Neurophysiol 1995; 96: 6–111.

    Article  PubMed  Google Scholar 

  12. Tamaki T, Yamashita T, Koboyashi H. Spinal cord monitoring. Jap J Electroneceph Electromyograph 1972; 1: 196.

    Google Scholar 

  13. Kurokawa T. Spinal cord action potentials evoked by epidural stimulation of spinal cord – a report of human and animal recording. Jap J Electroneceph Electromyograph 1972; 1: 64–66.

    Google Scholar 

  14. Harada H. Study on experimental spinal cord injuries by distrcation using spinal cord evoked potentials. J Jpn Orthop Ass 1983; 57: 685–701.

    Google Scholar 

  15. Imai T. Human electrospinogram evoked by dircet stimulation on the spinal cord through epidural space. J Jpn Orthop Ass 1976; 55: 1037–1056.

    Google Scholar 

  16. Satomi K, Nashimoto GI. Comparison of spinal evoked potentials by stimulation of the sciatic nerve and the spinal cord. Spine 1985; 10: 884–890.

    PubMed  Google Scholar 

  17. Imai K. A clinical study on intra-operative spinal cord monitoring with spinal evoked potentials for scoliosis. J Jpn Orthop Ass 1988; 62: 685–701.

    Google Scholar 

  18. Gracco RQ, Evans B. Spinal evoked potentials in the cat: Effects of asphyxia strychnine, cord section and compression. Electroenceph Clin Neurophysiol 1978; 44: 187–201.

    Article  PubMed  Google Scholar 

  19. Crawford ES, Schuessler JS. Thoracoabdominal and abdominal aortic aneurysms involving celiac, superior mesenteric, and renal arteries. World J Surg 1980; 4: 643–652.

    Google Scholar 

  20. Cunningham FN, Laschinger JC, Merkin HA, et al. Measurement of spinal cord ischemia during operation upon the thoracic aorta. Ann Surg 1982; 196: 285–296.

    PubMed  Google Scholar 

  21. Laschinger JG, Cunningham Jr JN, Catenella FP, et al. Detection and prevention of intraoperative spinal cord ischemia after cross-clamping of the thoracic aorta. Surgery 1982; 92: 1109–1117.

    PubMed  Google Scholar 

  22. Laschinger JC, Cunningham J, Baumann G, et al. Monitoring of somatosensory evoked potentials during procedures on the thoracoabdominal aorta. II. Use of somatosensory evoked potentials to assess adequacy of distal aortic bypass and perfusion. J Thorac Cardiovasc Surg 1987; 94: 266–270.

    PubMed  Google Scholar 

  23. Cunningham JN, Laschinger JC, Spencer FC. Monitoring of somatosensory potentials during surgical procedures on the thoraco-abdominal aorta. IV. Clinical observations and results. J Thorac Cardiovasc Surg 1987; 94: 275–285.

    Google Scholar 

  24. Grabitz K, Freye E, Sandmann W. Somatosensory-evoked potentials, a prognostic tool for the recovery of motor function following malperfusion of the spinal cord: studies in dogs. J Clin Monit 1993; 9: 191–195.

    Article  PubMed  Google Scholar 

  25. Coles JG, Wilson GJ, Sima AF. Intraoperative detection of spinal cord ischemia using somatosensory evoked potentials during thoracic aortic occlusion. Ann Thorac Surg 1982; 34: 299-306.

    PubMed  Google Scholar 

  26. Freye E, Grabitz K, Sandmann W. Assessment of recovery of spinal cord function using somatosensory evoked potentials after thoracic aortic cross-clamping. J Clin Monit 1990; 6: 167.

    Google Scholar 

  27. Freye E, Prior R, Braun M. Protection from spinal cord injury by intravenous prostaglandin E1 (PGE1) after one hour occlusion of the descending thoracic aorta. Prostaglandins in Clinical Research: Cardiovascular System New York: Alan R. Liss, Inc, 1989: 211–216.

  28. Laschinger JC, Cunningham JN, Cooper MM, et al. Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. I. Relationship of aortic cross-clamping duration, changes in somatosensory evoked potentials, and incidence of neurologic dysfunction. J Thorac Cardiovasc Surg 1987; 94: 260–265.

    PubMed  Google Scholar 

  29. Misrahi E, Crawford ES. Somatosensory evoked potentials during reversible spinal cord ischemia in man. Electroencephalogr Clin Neurophysiol 1984; 58: 120–126.

    Article  PubMed  Google Scholar 

  30. Grabitz K, Freye E, Prior R, et al. The role of superoxide dismutase (SOD) in preventing postischemic spinal cord injury. In: Emerit I, Packer L, Auclair C, (eds.) Antioxidants in Therapy and Preventive Medicine New York-London: Plenum Press, 1990: 13–16.

    Google Scholar 

  31. Lim KH, Connolly M, Rose D, et al. Prevention of reperfusion injury of the ischemic spinal cord: Use of recombinant superoxide dismutase. Ann Thorac Surg 1986; 42: 282–286.

    PubMed  Google Scholar 

  32. Turrens JF. Superoxide dismutase. Drugs Today 1988; 24: 755–765.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Freye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freye, E. Cerebral Monitoring in the Operating Room and the Intensive Care Unit: An introductory for the clinician and a guide for the novice wanting to open a window to the brain. J Clin Monit Comput 19, 169–178 (2005). https://doi.org/10.1007/s10877-005-0714-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-005-0714-x

Keywords

Navigation